Aim: What are the steps involved in cultural eutrophication?

- DO the free, non-compound oxygen present in water
 - an important parameter in assessing water quality (2-9 ppm for animal survival)

BOD - the amount of dissolved oxygen used by bacteria to decompose the organic matter in the water

- can be used as a measure of the degree of pollution

Steps in Cultural/Artificial Eutrophication

- 1. excess N and P enter waterways by runoff
- 2. nutrients promote plant growth, esp. algae
- 3. algal bloom occurs
- 4. algae die and are decomposed by bacteria
- 5. decomposition of algae increase BOD
- 6. there is a drop in DO (hypoxia = oxygen deficiency)
- 7. fish and other aquatic life forms die

Sources of Nitrogen and Phosphorus

- 1. runoff from chemically fertilized lawns, croplands, and golf courses
- 2. runoff of phosphate detergents
- 3. livestock manure runoff
- 4. urban sewage with fecal matter
- 5. aquaculture (fish farming) waste build up
- 6. burning fossil fuels \rightarrow HNO₃ (nitric acid) \rightarrow acid rain

Cultural/Artificial Eutrophication: Prevention and Remediation

- 1. land use control to reduce runoff (examples: commercial/residential zoning laws, limit land-clearing)
- 2. bans/limits on P in detergents
- 3. advanced wastewater treatment to filter sewage
- 4. skimming algae at formation
- 5. dredging (scooping up nutrient build-up)
- 6. aerating to increase DO in water (expensive)

Cultural Eutrophication Review Questions

- 1. Which of the following would be a reactive way of dealing with cultural eutrophication?
 - (A) skimming and dredging waterways
 - (B) making stricter laws concerning land use
 - (C) making stricter regulations regarding the amount of phosphorus used in detergents
 - (D) planting vegetative barriers to reduce runoff from farmland
 - (E) improving wastewater treatment to remove more organic wastes from urban sewage
- 2. Which of the following are sources of nutrients that promote algal blooms?
 - I. fertilizers
 - II. detergents
 - III. animal wastes
 - (A) I, only
 - (B) I and II, only
 - (C) I and III, only
 - (D) II and III, only
 - (E) I, II, and III
- 3. Which of the following represents some of the steps that lead to cultural eutrophication in the order that they occur?
 - (A) runoff of fertilizer \rightarrow algal bloom \rightarrow increased dissolved oxygen \rightarrow fish die
 - (B) decreased dissolved oxygen \rightarrow algae dies \rightarrow increase of bacteria \rightarrow fish die
 - (C) runoff of fertilizer \rightarrow algal bloom \rightarrow algae die \rightarrow decrease in dissolved oxygen \rightarrow fish die
 - (D) increase of bacteria \rightarrow decrease of dissolved oxygen \rightarrow algae die \rightarrow CO₂ increases \rightarrow fish die
 - (E) runoff of fertilizer \rightarrow algal die \rightarrow bacteria die \rightarrow fish die
- 4. Although it is not one of the major causes of eutrophication, some water environments, such as the Yellow Sea are affected by cultural eutrophication because of
 - (A) runoff of phosphate detergents
 - (B) acid rain
 - (C) oil spills
 - (D) thermal pollution from nearby factories
 - (E) agricultural runoff

- 5. As the number of bacteria in an aquatic system increase
 - (A) BOD and DO increase
 - (B) BOD and DO decrease
 - (C) BOD increases and DO decreases
 - (D) BOD decreases and DO increases
 - (E) BOD and DO remain unaffected
- 6. Chemical fertilizers affect nutrient cycles because they are rich in
 - (A) nitrogen and sulfur
 - (B) phosphorus and carbon
 - (C) sulfur and carbon
 - (D) phosphorus and nitrogen
 - (E) potassium and carbon dioxide
- 7. Fish farming is also known as
 - (A) aquaculture, which does not contribute to eutrophication
 - (B) aquaculture, which contributes to eutrophication
 - (C) hydroculture, which does not contribute to eutrophication
 - (D) hydroculture, which contributes to eutrophication
 - (E) none of the above
- 8. How is dredging organic material different from skimming?
 - (A) dredging is a proactive means of dealing with eutrophication, while skimming is reactive
 - (B) dredging is a reactive means of dealing with eutrophication, while skimming is proactive
 - (C) dredging requires the scooping of organic material from the bottom of an aquatic environment, while skimming deals with organic growth on the surface of an aquatic environment
 - (D) skimming requires the scooping of organic material from the bottom of an aquatic environment, while dredging deals with organic growth on the surface of an aquatic environment
 - (E) dredging is only performed in lakes, while skimming is only performed in bays and oceans
- 9. Aerating ponds and lakes is
 - (A) a proactive way of decreasing dissolved carbon dioxide in the water
 - (B) a reactive way of decreasing dissolved carbon dioxide in the water
 - (C) a proactive way of decreasing dissolved oxygen in the water
 - (D) a reactive way of increasing dissolved carbon dioxide in the water
 - (E) a proactive way of increasing dissolved oxygen in the water
- 10. Which of the following is not one of the steps in cultural eutrophication?
 - (A) algal blooms increase photosynthesis which depletes dissolved oxygen
 - (B) fish suffocate due to hypoxia (lack of oxygen)
 - (C) fertilizer runoff enters an aquatic ecosystem
 - (D) BOD by bacteria increases
 - (E) dissolved oxygen decreases as a result of an increased BOD by bacteria